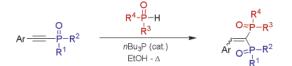
Phosphine-Catalyzed α -*P*-Addition on Activated Alkynes: A New Route to P–C–P Backbones

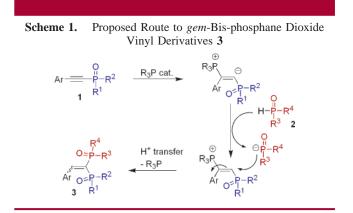
LETTERS 2006 Vol. 8, No. 19 4283-4285


ORGANIC

Delphine Lecerclé, Marcin Sawicki, and Frédéric Taran*

Service de Marquage Moléculaire et de Chimie Bioorganique, Commissariat à l'Energie Atomique, Gif sur Yvette, F-91191 France frederic.taran@cea.fr

Received June 28, 2006


ABSTRACT

n-Tributylphosphine was found to efficiently catalyze the α -*P* addition of *H*-phosphonates, *H*-phosphinates, and *H*-phosphine oxide pronucleophiles on alkynes bearing phosphane oxide activating moieties. The reaction leads to 2-aryl-1-vinyl-1,1-diphosphane dioxide derivatives in good yields affording a new route to P–C–P backbones. The products of this reaction are easily converted to biologically important 1,1-bisphosphonates analogues.

Catalysis employing tertiary phosphines has proven to be useful for a series of transformations of electron-deficient alkynes.¹ In these reactions, the phosphine catalyst allows redirection of the regioselectivity of the addition of nucleophiles to these Michael acceptors from the classical β -addition mode to an α or γ addition. Although phosphinescatalyzed γ -addition reactions has been widely described,² the α -addition has been explored only with nitrogen³ or oxygen⁴ pronucleophiles. In connection with our efforts to extend the α -addition reaction,⁵ we now report our investigations concerning the reaction of *P*-centered pronucleophiles to alkynes activated by a phosphane oxide moiety. This

10.1021/ol061589v CCC: \$33.50 © 2006 American Chemical Society Published on Web 08/23/2006 reaction should generate 1-vinyl-1,1-diphosphane dioxide derivatives **3**, whose preparation has only been sporadically reported,⁶ and provide a new access to P-C-P backbones (Scheme 1).

According to the postulated mechanism (Scheme 1), the nucleophilic tertiary phosphine adds first to the triple bond

^{(1) (}a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535-544.
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035-1050.
(c) Lu, X.; Du, Y.; Lu, C. Pure Appl. Chem. 2005, 77, 1985-1990. (d) Valentine, D. H.; Hillhouse, J. H. Synthesis 2003, 3, 317-334.

^{(2) (}a) Trost, B. M., Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167-3168.
(b) Alvarez-Ibarra, C.; Csaky, A. G.; de la Oliva, C. G. J. Org. Chem. 2000, 65, 3544-3547. (c) Trost, B. M.; Dake, G. R. J. Org. Chem. 1997, 62, 5670-5671. (d) Trost, B. M.; Li, C. J. J. Am. Chem. Soc. 1994, 116, 10819-10820.

^{(3) (}a) Trost, B. M.; Dake, G. R. J. Am. Chem. Soc. **1997**, 119, 7595–7596. (b) Lu, C.; Lu, X. Org. Lett. **2002**, 26, 4677–4679. (c) Boatman, P. D.; Urban, J.; Nguyen, M.; Qabar, M.; Kahn, M. Bioorg. Med. Chem. Lett. **2003**, 13, 1445–1449.

⁽⁴⁾ Kuroda, H.; Tomita, I.; Endo, T. Org. Lett. 2003, 2, 129-131.

^{(5) (}a) Hanedanian, M.; Loreau, O.; Taran, F.; Mioskowski, C. *Tetrahedron Lett.* **2004**, *45*, 7035–7038. (b) Hanedanian, M.; Loreau, O.; Sawicki, M.; Taran, F. *Tetrahedron* **2005**, *61*, 2287–2294.

^{(6) (}a) Inoue, S.; Okauchi, T.; Minami, T. Synthesis 2003, 1971–1976.
(b) Degenhardt, C. R.; Burdsall, D. C. J. Org. Chem. 1986, 51, 3488–3490. (c) Lehnert, W. Tetrahedron 1974, 30, 301–305.

of the electron-deficient alkyne 1, generating an active phosphonium intermediate which then could undergo nucleophilic α -*P*-addition of the *H*-phosphane oxide pronucleophile 2 followed by elimination of the phosphine catalyst. Several parameters including the nature of the phosphine catalyst and the p K_a of the pronucleophile 2 might therefore influence the efficiency of the reaction.

As a model reaction, we investigated the α -*P*-addition of diethyl phosphite **2a** to alkynylphosphonate **1a** using various phosphines as catalysts. The results, summarized in Table 1, showed that the yield of the expected product **3a** depends

Table 1. Optimization of the Reaction Conditions^a

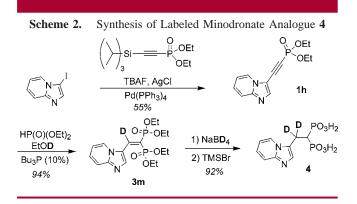
Table 1. Optimization of the Reaction Conditions							
1a	O O −P−OEt + EtO−P−H OEt 2a	R ₃ P (20%) ∆ - 12 h	OEt O≈p-OEt O≤P-OEt OEt 3a				
entry	R_3P	solvent	yield ^{b} (%)				
1	$Ph_{3}P$	toluene	5				
2	Ph_2PMe	toluene	10				
3	n -Bu $_3$ P	toluene	42				
4	$\mathrm{Et}_{3}\mathrm{P}$	toluene	65				
5	n -Bu $_3$ P	dioxane	34				
6	n -Bu $_3$ P	Et_2O	20				
7	n -Bu $_3$ P	EtOH	98				
8	n -Bu $_3$ P	DMF	18				
9	n-Bu ₃ P	DMSO	2				

^{*a*} Reactions conducted in refluxing solvent (or 110 °C for DMF and DMSO) under argon; the concentration of the substrates was 0.1 M. ^{*b*} Yields of **3a** were determined by HPLC.

on the nature of the phosphine and the solvent. As expected, the requirement of a highly nucleophilic trialkylphosphine is clearly illustrated by the reactivity order of the tested phosphines (entries 1-4, Table 1). The use of ethanol as solvent was also found essential to achieve complete conversion of the substrate into the desired product (entry 7, Table 1). Previous findings showed that alcohols might act as cocatalysts in phosphine-catalyzed isomerization of alkynoates.⁷

To explore the scope and limitation of the reaction, we then carried out a series of α -*P*-additions using the optimized conditions. Different *P*-pronucleophiles **2** were thus refluxed in ethanol with arylalkynes **1** activated by a phosphonate, phosphinate, or phosphine oxide group in the presence of *n*Bu₃P. Whatever the combinations, the corresponding products were successfully obtained in moderate to high yields (Table 2). The products bearing two different phosphane oxide groups were isolated as a mixture of stereoisomers.

Compounds **3** are evident precursors of *gem*-bis-phosphonates analogues which are now recognized as an important class of therapeutically active molecules for several human pathologies, such as osteoporosis,⁸ rheumatoid arthritis,⁹ and cancer.¹⁰ In this context, the presented method might be a

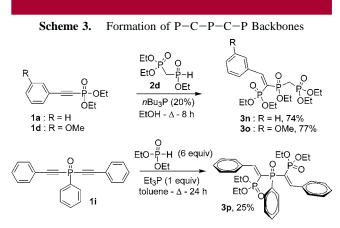

Table 2.	Phosphine-Catalyzed	gem-Bis(phosphane	oxide)vinyl
Derivative	Synthesis ^a		

Ar 1	$P = R^2 + R^1$	0 R ⁴ -P-H R ³ 2	-	<i>n</i> Bu ₃ P (20%) ► EtOH - ∆ - 8 h	$Ar_{0} = P-R^{2}$
entry	p	roduct 3		yield (%) ^b	ratio Z/E
1			3a	95	-
2		Y ^P , Ph OEt P(OEt) ₂	3ь	90	75/25
3		₹ [₽] (Ph) ₂	3c	64	100/0
4		Ph OEt Ph Ph	3d	63	-
5		Ŷ [₽] (Ph) ₂	3e	53	-
6	MeO	OF ^P (OEt) ₂) _{2 3}	95 ⁹⁵	-
7	MeO	o ^{s P} (OEt) ₂	3	g 92	75/25
8	F C	<pre> ^O ^P(OEt)₂ ^P(OEt)^P</pre>	3h	80	-
9	F	Ph OEt (OEt)	31	i 81	70/30
10	Ph		2 3 j	83	-
11	Ph	o ^P (OEt) ₂	31	. 79	75/25
12			31	97	-

^{*a*} Reaction conditions: alkyne **1** (0.5 mmol), *P*-pronucleophile **2** (0.55 mmol), *n*-Bu₃P (0.1 mmol), EtOH reflux under Ar. ^{*b*} Isolated yields.

valuable new route for the synthesis as well as the labeling of these important biologically active compounds. As an example, the preparation of the heterocyclic bisphosphonate **4** was easily carried out in 4 steps (47% global yield) using the presented reaction as a key step; the possibility of labeling was also confirmed (Scheme 2). Compound **4** is an analogue

⁽⁷⁾ Guo, C.; Lu, X. J. Chem. Soc., Perkin Trans. 1 1993, 1921-1923.



to minodronate (also known as YM529), a member of the third-generation of biologically active bisphosphonates.¹¹

Finally, we have undertaken the preparation of P–C–P– C–P backbones using the *n*-Bu₃P mediated α -*P*-addition reaction. The reaction of *H*-phosphonylphosphonate **2d** with alkynyl phosphonates **1a** and **1d** proceeded smoothly to afford, after chromatographic purification, the corresponding vinylic triphosphane trioxides P(O)–C–P(O)–C–P(O) **3n** and **3o** as pure *Z* isomers in good yields. Double α -*P*-addition reaction of diethyl phosphite **2a** was also achieved on bisalkynyl phosphine oxide **1i**. The reaction conducted to the expected product **3p** as pure *Z*,*Z* isomer but required the use of a less hindered phosphine (Et₃P) and drastic conditions which conducted to poor yield (Scheme 3).

In conclusion, we have developed a simple and practical method for the preparation of 2-aryl-1-vinyl-1,1-diphosphane dioxide derivatives. These products can be easily converted into 1,1-bis-phosphonates which are important biologically active drugs. The reported methodology allows the control

(8) Widler, L.; Jaeggi, K. A.; Glatt, M. Muller, K.; Bachmann, R.; Bisping, M.; Born, A. R.; Corseti, R.; Guiglia, G.; Jeker, H.; Klein, R.; Ramseier, U.; Schmid, J.; Schreiber, G.; Seltenmeyer, Y.; Green, J. R. J. Med. Chem. **2002**, 45, 3721–3738.

of the nature of the two phosphane oxide groups, which constitutes an undeniable advantage compared to classical methods.¹² An interesting possibility would be the synthesis and biological evaluation of the phosphinates analogues of the 1,1-bis-phosphonates currently used as therapeutic agents. This structural modification should indeed decrease the highly charged nature of these drugs and therefore increase their uptake. From an organic synthesis point of view, the present methodology offers a new route to compounds bearing P(O)-C-P(O) moiety which are common precursors of vinyl phosphane oxides¹³ and of ligands for catalysis.¹⁴

The presented reaction can also be successfully used for the straightforward synthesis of compounds bearing P-C-P-C-P backbones. Further investigations to prepare various biochemically stable triphosphate analogues using this methodology are currently underway.

Acknowledgment. This work was supported by the "Nuclear Toxicology" program of the CEA for which grateful acknowledgment is made. We also thank E. Zekri and D. Buisson (CEA) for experimental assistance with MS and LC/MS measurements.

Supporting Information Available: Experimental procedures for synthesis and full characterization for compounds; ¹H NMR and ³¹P NMR spectra of products **3a**-**p** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061589V

⁽⁹⁾ Russel, R. G. G.; Rogers, M. J. Br. J. Rheumatol. 1997, 36 (Suppl. 1), 10-14.

^{(10) (}a) Pecherstorfer, M.; Herrmann, Z.; Body, J.-J.; Manegold, C.; Degardin, M.; Clemens, M. R.; Thurlimann, B.; Tubiana-Hulin, M.; Steinhauer, E. U. J. Clin. Oncol. **1996**, *14*, 268–276. (b) Clezardin, P.; Fournier, P.; Boissier, S.; Peyruchaud, O. Curr. Med. Chem. **2003**, *10*, 173– 180. (c) Guenin, E.; Ledoux, D.; Oudar, O.; Lecouvet, M.; Kraemer, M. Anticancer Res. **2005**, *25*, 1139–1146. (d) Wilheim, M.; Kunzman, V.; Eckstein, S.; Reimer, P.; Weissinger, F.; Ruediger, T.; Tony, H. P. Blood **2003**, *102*, 200–206.

^{(11) (}a)Yuasa, Y.; Nogawa, M.; Kimura, S.; Yokota, A.; Sato, K.; Segawa, H.; Kuroda, J.; Maekawa, T. *Clin. Cancer Res.* **2005**, *11*, 853– 859. (b) Cheng, F.; Oldfield, E. *J. Med. Chem.* **2004**, *47*, 5149–5158. (c) Sanders, J. M.; Ghosh, S.; Chan, J. M. W.; Meints, G.; Wang, H.; Raker, A. M.; Song, Y.; Colantino, A.; Burzynska, A.; Kafarski, P.; Morita, C. T.; Oldfield, E. *J. Med. Chem.* **2004**, *47*, 375–384. (d) Szabo, C. M.; Martin, M. B.; Oldfield, E. *J. Med. Chem.* **2002**, *45*, 2894–2903. (e) Sanders, J. M.; Ghosh, S.; Chan, J. M. W.; Meints, G.; Wang, H.; Raker, A. M.; Song, Y.; Colantino, A.; Burzynska, A.; Kafarski, P.; Morita, C. T.; Oldfield, E. *J. Med. Chem.* **2004**, *47*, 375–384. (f) Ling, Y.; Sahota, G.; Odeh, S.; Chan, J. M. W.; Araujo, F. G.; Moreno, S. N. J.; Oldfield, E. *J. Med. Chem.* **2005**, *48*, 3130–3140. (g) Kotsikorou, E.; Oldfield, E. *J. Med. Chem.* **2003**, *46*, 2932–2944.

^{(12) (}a) Mallard, I.; Benech, J. M.; Lecouvey, M.; Leroux, Y. *Phosphorus Sulfur Silicon* **2000**, *162*, 15–23. (b) Gouault-Bironneau, S.; Deprèle S.; Sutor, A.; Montchamp, J.-P. Org. Lett. **2005**, *7*, 5909–5012. (c) Lecouvey, M.; Mallard, I.; Bailly, T.; Burgada, R.; Leroux, Y. Tetrahedron Lett. **2001**, *42*, 8475–8478. (d) Guenin, E.; Degache, E.; Liquier, J.; Lecouvey, M. *Eur. J. Org. Chem.* **2004**, 2983–2987.

⁽¹³⁾ See, for example: (a) Nagaoka, Y.; El-Koussi, N.; Uesato, S.; Tomioka, K. *Tetrahedron Lett.* **2002**, *43*, 4355–4360. (b) Nagaoka, Y.; Inoue, H.; El-Koussi, N.; Tomioka, K. *Chem. Commun.* **2002**, *2*, 122– 123.

⁽¹⁴⁾ For example, benzylidenebisphosphine oxide **3e** is easily reduced by LAH to the corresponding saturated bisphosphine, data not shown.